Effects of Strong Fields in Ultra-Peripheral and Peripheral A+A collisions

Daniel Brandenburg

Brookhaven National Lab(CFNS): Goldhaber Fellow

RHIC & AGS Users' Meeting 2020

October 22nd, 2020 (via ZOOM)

Motivation for Directly Measuring the Magnetic Field

Predicted emergent magnetohydrodynamical phenomena of Quantum Chromodynamics

- Manifestations require ultra-strong magnetic fields
- ○E.g. Chiral Magnetic Effect
- Major goal of RHIC heavy-ion program
 - o Dedicated Isobar run in 2018

Dima Kharzeev's Quark Matter 2019 talk:

Absent in Maxwell theory!

$$ec{J}=rac{e^2}{2\pi^2}\;\mu_5\;ec{B}$$

DK, L.McLerran, H.Warringa NPA'o

Chiro-genesis in Heavy Ion Collisions

Image: D. Leinweber

Coefficient is fixed by the chiral anomaly, no

corrections

K.Fukushima, DK, H.Warringa, "Chiral magnetic effect" PRD'08

NEED TO KNOW THE MAGNETIC FIELD FOR QUANTITATIVE STUDIES

Ultra-Relativistic Heavy-Ion Collisions

Ultra-relativistic charged nuclei produce <u>highly Lorentz</u> contracted electromagnetic field

 $Z\alpha \approx 1 \rightarrow \text{High photon density}$ Ultra-strong electric and magnetic fields:

ightarrow Expected magnetic field strength $\overrightarrow{B} \approx 10^{14} - 10^{16}$ T Skokov, V., et. al. *Int. J. Mod. Phys. A* 24 (2009): 5925–32

Study unique features of QED under extreme conditions

Photon-Photon fusion (Breit-Wheeler Process)

Weizsäcker, C. F. v. Zeitschrift für Physik 88 (1934): 612

Weizäcker-Williams Equivalent Photon Approximation (EPA)

 \rightarrow In a specific phase space, <u>transverse</u> EM fields can be quantized as a flux of **real photons**

Photon-photon fusion into lepton anti-lepton pair Characterized by l^+l^- pair with very small p_T

Photon number density related to field strength (Poynting Vector)

$$n \propto \vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B} \approx |\vec{E}|^2 \approx |\vec{B}|^2$$

Traditional EPA calculations (e.g. STARLight[1]) have predicted cross section correctly for decades → so what is new?

[1] S. R. Klein, et. al. Comput. Phys. Commun. 212 (2017) 258

Photon-Photon fusion (Breit-Wheeler Process)

Weizsäcker, C. F. v. Zeitschrift für Physik 88 (1934): 612

Weizäcker-Williams Equivalent Photon Approximation (EPA)

 \rightarrow In a specific phase space, <u>transverse</u> EM fields can be quantized as a flux of **real photons**

Photon-photon fusion into lepton anti-lepton pair Characterized by l^+l^- pair with very small p_T

What's new?

- 1. Pair p_T shows impact parameter dependence
 - → Sensitivity to the field mapping
- 2. Azimuthal angle correlation in daughter leptons
 - → Quantum position-momentum correlations

Use these to experimentally constrain the initial EM fields

Surprising result in Peripheral Collisions

STAR Measurement of e^+e^- at low p_T

Strong excess at low p_T over hadronic cocktail observed in peripheral collisions

[1] STAR, Phys. Rev. Lett. 121 (2018) 132301

ATLAS Measurement of $\mu^+\mu^-$ at small acoplanarity

Pairs with small acolanarity (proxy to pair p_T) observed in peripheral collisions

$$\alpha = 1 - \frac{|\phi^+ - \phi^-|}{\pi} \propto \frac{p_T}{M}$$

[2] ATLAS, Phys. Rev. Lett. 121, 212301 (2018)

→Photon-photon fusion even in peripheral collisions with hadronic overlap?

Surprising result in Peripheral Collisions

STAR Measurement of e^+e^- at low p_T

Strong excess at low p_T over hadronic cocktail observed in peripheral collisions

[1] STAR, Phys. Rev. Lett. 121 (2018) 132301

ATLAS Measurement of $\mu^+\mu^-$ at small acoplanarity

Pairs with small acolanarity (proxy to pair p_T) observed in peripheral collisions

$$\alpha = 1 - \frac{|\phi^+ - \phi^-|}{\pi} \propto \frac{p_T}{M}$$

[2] ATLAS, Phys. Rev. Lett. 121, 212301 (2018)

→Photon-photon fusion even in peripheral collisions with hadronic overlap?

Traditional EPA calculation cannot describe p_T or α distribution

Is the broadening due to final state, medium effects?

• Idea: Extremely small $P_{\perp} \rightarrow$ easily deflected by relatively small perturbations

- Two proposals from different groups:
- 1. Lorentz-Force bending due to long-lived magnetic field [1] STAR, Phys. Rev. Lett. 121 (2018) 132301
- 2. Coulomb scattering through QGP medium [2] S. R. Klein, et. al, Phys. Rev. Lett. 122, (2019), 132301 [3] ATLAS, Phys. Rev. Lett. 121 (2018), 212301

L. McLerran, V. Skokov, Nuclear Physics A 929 (2014) 184–190

Equivalent Photon Approximation

- Traditional Equivalent Photon Approximation (EPA) has been used to describe cross section successfully ($\sim \pm 30\%$ level) for years
- ✓ Take impact parameter (b) into account for photon flux
- XBUT, treats photons as plane waves with $\vec{k}=k\hat{z}$
 - In this treatment photon p_T must result from virtuality
 - \rightarrow No *b*-dependence on kinematics (p_T , α , etc)
- Until recently there was no data to test the validity of these assumptions
 - E.g. past ATLAS UPC measurements agree with STARLight but resolution effects are significant, obscure the physics
 - o Past STAR measurements insufficient statistical precision

[1] S. R. Klein, et. al. Comput. Phys. Commun. 212 (2017) 258

$d\sigma(\gamma\gamma \to e^+e^-)/dP_\perp$

QED and STARLight are scaled to match measured $\sigma(\gamma\gamma \to e^+e^-)$

STARLight: S. R. Klein, et. al. *Comput. Phys. Commun.* 212 (2017) 258 QED: W. Zha, J.D.B., Z. Tang, Z. Xu arXiv:1812.02820 [nucl-th]

- STAR's excellent p_T resolution → directly measure pair p_T
- High precision data test various theory predictions/assumptions
- \circ STARLight predicts significantly lower $\langle P_{\perp} \rangle$ than seen in data
- \circ Is the increased P_{\perp} observed due to significant virtuality?
- Let's look at how the calculation is done in the lowest order QED case

Pair p_T and impact parameter

QED (and gEPA parameterization) describe data Larger $\langle P_{\perp} \rangle$ from impact parameter dependence not a result of significant photon virtuality

Note: gEPA1 vs. gEPA2 : gEPA2 includes phase term to approximate full QED result

○ QED calculation predicts impact parameter dependence → dependence on the overlapping field strengths. Can the QED describe the peripheral data?

QED Calculation & Peripheral Data

- Peripheral data from both STAR and ATLAS are well described by QED calculation
- ATLAS has newer high precision data

QED Calculation & Peripheral Data

- Similar measurement by ALICE in 70 90% central collisions
- Low statistics $\rightarrow p_T$ distribution favors QED calculation over traditional EPA

ALICE Preliminary from QM19

QED Calculation & CMS UPC Data

Shuai Yang, CMS Preliminary from HP2020

- CMS measured α for various impact parameter ranges by tagging the neutron emission
- Acoplanarity shows impact parameter dependence in UPC
 purely initial state effect
- QED calculation also describes this data well,

see <u>arxiv:2006.07365</u>

$\gamma\gamma \rightarrow e^+e^-$: UPC vs. Peripheral [2] S. R. Klein, et. al, Phys. Rev. Lett. 122 (2018) 132301 [2] S. R. Klein, et. al, Phys. Rev. Lett. 122, (2019), 132301

[3] ATLAS Phys. Rev. Lett. 121 (2018), 212301

Characterize difference in spectra via $\sqrt{\langle}$	$\overline{\langle P_{\perp}^2 \rangle}$
---	--

$\sqrt{\left\langle P_{\perp}^{2} ight angle }$ (MeV/c)	UPC Au+Au	6o-8o% Au+Au	
Measured	38.1 ± 0.9	50.9 ± 2.5	
QED	37.6	48.5	
<i>b</i> range (fm)	≈ 20	≈ 11.5 <i>−</i> 13.5	

- Leading order QED calculation of $\gamma\gamma \rightarrow e^+e^-$ describes both spectra ($\pm 1\sigma$)
- Best fit for spectra in 6o-8o% collisions found for QED shape plus 14 ± 4 (stat.) ± 4 (syst.) MeV/c broadening
- Proposed as a probe of trapped magnetic field or Coulomb scattering in QGP [1-3]

QED describes p_T spectra in terms of the initial fields!

Maybe there is still room for final state effects – test with new ATLAS results (QM19)

Connection to the Initial Magnetic Field

Magnetic field strength and spatial distribution:

- Impact parameter dependence of P_{\perp}
- Amplitude of azimuthal angular modulation

QED calculations for Breit-Wheeler $(\gamma\gamma \to e^+e^-)$ process that use the field map (to the right) describe data $\pm 1\sigma$

Peak value for single ion: $|B| \approx 0.8 \times 10^{15}$ Tesla $\approx 10,000 \times$ stronger than Magnetars

Transverse linearly polarized photons

- Lorentz contraction of EM fields \rightarrow Quasi-real photons should be linearly polarized in transverse plane $(\vec{E} \perp \vec{B} \perp \vec{k})$ $-\vec{E} - \vec{B}$
- Polarization vector: aligned radially with the "emitting" source
- Well defined in the photon position eigenstates
- In general event average, washes out polarization effects, since \vec{b} is random

Transverse linearly polarized photons

• Angle between photon polarizations depends on location of produced pair

Transverse linearly polarized photons

• Angle between photon polarizations depends on location of produced pair

Experimental Signature of Vacuum Birefringence

Optical Theorem

Light-by-Light Scattering

Recently realized, $\Delta \sigma = \sigma_{\parallel} - \sigma_{\perp} \neq 0$ leads to a $\cos(4\Delta\phi)$ modulation in polarized $\gamma\gamma \rightarrow e^+e^-$ [1] The corresponding vacuum LbyL scattering[2] displays a $\cos(2\Delta\phi)$ modulation

[1] C. Li, J. Zhou, Y.-j. Zhou, Phys. Lett. B 795, 576 (2019)

[2] Harland-Lang, L. A., Khoze, V. A. & Ryskin, M. G. Eur. Phys. J. C 79, 39 (2019).

$$\Delta \phi = \Delta \phi [(e^+ + e^-), (e^+ - e^-)]$$

$$\approx \Delta \phi [(e^+ + e^-), e^+]$$

Birefringence of the QED Vacuum

[1] C. Li, J. Zhou, Y.-j. Zhou, Phys. Lett. B 795, 576 (2019) QED calculation: Li, C., Zhou, J. & Zhou, Y. Phys. Rev. D 101, 034015 (2020).

Polarized $\gamma\gamma \rightarrow e^+e^-$ leads to $\cos 4\Delta\phi$ modulations due to quantum space-momentum correlations[1]

$$\Delta \phi = \Delta \phi [(e^+ + e^-), (e^+ - e^-)]$$

 $\approx \Delta \phi [(e^+ + e^-), e^+]$

Ultra-Peripheral

Quantity	Measured	QED	χ^2/ndf
$-A_{4\Delta\phi}(\%)$	16.8 ± 2.5	16.5	18.8 / 16

Peripheral (60-80%)

Quantity	Measured	QED	χ^2/ndf
$-A_{4\Delta\phi}(\%)$	27 ± 6	34.5	10.2 / 17

ightarrow First Earth-based observation (6.7 σ level) of vacuum birefringence

Connection to the Initial Magnetic Field

Magnetic field strength and spatial distribution:

• Amplitude of $\cos 4\Delta\phi$ modulation is quite sensitive to field distribution

• Illustration to show that $\Delta \phi[\overrightarrow{\xi_1}, \overrightarrow{\xi_2}]$ changes with b

Caveat: These do not include $\sigma^{\gamma\gamma\to l^+l^-}$, integrated over kinematics, only meant as illustration

Summary

- Many recent exciting developments in photo-processes
- 2. Experimental & theoretical advances
 - → connection to initial EM field strength & distribution
- 3. First Earth-based evidence of vacuum birefringence :
 - Observed by STAR (6.7 σ) via angular modulations in linear polarized $\gamma\gamma \to e^+e^-$ process
- 4. Experimental evidence that HIC produce the strongest magnetic fields in the Universe $\approx 10^{15}\,\text{Tesla}$ over an extensive spatial distribution

A lot more work needed to further constrain magnetic field topology and to test for possible medium effects – Exciting opportunities lie ahead

Additional Slides

Long-lived Magnetic Field?

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$

Assumptions:

- 1. Used STARLight P_{\perp} Spectra
- 2. All e^{\pm} traverse 1 fm through $|B| \approx 10^{14} \text{T} (eBL \approx 30 \text{ MeV}/c)$

Coulomb Scattering through QGP

[1] S. R. Klein, et. al, Phys. Rev. Lett. 122, (2019), 132301 [2] ATLAS Phys. Rev. Lett. 121 (2018), 212301

• Charged particles may scatter off charge centers in QGP, modifying

primordial pair P_{\perp} ?

Assumptions:

- 1. Primordial distribution given by STARLight
- 2. Daughters traverse medium

QED Calculations & CMS Acoplanarity

Determine neutron multiplicity

- 0n0n, 0n1n, 0nXn, 1n1n, 1nXn, XnXn (X≥2)
- > Fit to estimate purity
 - On and Xn: ~100%
 - 1n: ~93-95% Shuai Yang, Hard Probes 2020

STARLIGHT only provides a few neutron emission scenarios

Leading order $\gamma\gamma \to \mu^+\mu^-$

\triangleright Decouple α spectrum:

- Data: $\langle \alpha^{\text{core}} \rangle = (1227 \pm 7 \text{ (stat.)} \pm 8 \text{ (syst.)}) \times 10^{-6}$
- STARlight: 1348 × 10⁻⁶

Total $\gamma\gamma \rightarrow e^+e^-$ cross-section in STAR Acceptance

STARLight: S. R. Klein, et. al. *Comput. Phys. Commun.* 212 (2017) 258 gEPA & QED : W. Zha, J.D.B., Z. Tang, Z. Xu arXiv:1812.02820 [nucl-th]

Pure QED 2 \rightarrow 2 scattering : $d\sigma/dM \propto E^{-4} \approx M^{-4}$

No vector meson production \rightarrow Forbidden for real photons with helicity ± 1 (i.e. 0 is forbidden)

 $\sigma(\gamma\gamma o e^+e^-)$ in STAR Acceptance:

Data: 0.261 ± 0.004 (stat.) \pm 0.013 (sys.) \pm 0.034 (scale) mb

STARLight | gEPA | QED

0.22 mb | 0.26 mb | 0.29 mb

Measurement of total cross section agrees with theory calculations at $\pm 1\sigma$ level

$d\sigma(\gamma\gamma \to e^+e^-)/d\cos\theta'$

 $\gamma\gamma \rightarrow e^+e^-$: Individual e^+/e^- preferentially aligned along beam axis [1]:

$$G(\theta) = 2 + 4\left(1 - \frac{4m^2}{W^2}\right) \frac{\left(1 - \frac{4m^2}{W^2}\right)\sin^2\theta\cos^2\theta + \frac{4m^2}{W^2}}{\left(1 - \left(1 - \frac{4m^2}{W^2}\right)\cos^2\theta\right)^2}$$

- Highly virtual photon interactions should have an <u>isotropic distribution</u>
- \circ Measure θ' , the angle between the e^+ and the beam axis in the pair rest frame.

[1] S. Brodsky, T. Kinoshita and H. Terazawa, Phys. Rev. **D4**, 1532 (1971) STARLight: S. R. Klein, et. al. *Comput. Phys. Commun.* 212 (2017) 258

$d\sigma(\gamma\gamma \to e^+e^-)/d\cos\theta'$

 $\gamma\gamma \rightarrow e^+e^-$: Individual e^+/e^- preferentially aligned along beam axis [1]:

$$G(\theta) = 2 + 4\left(1 - \frac{4m^2}{W^2}\right) \frac{\left(1 - \frac{4m^2}{W^2}\right)\sin^2\theta\cos^2\theta + \frac{4m^2}{W^2}}{\left(1 - \left(1 - \frac{4m^2}{W^2}\right)\cos^2\theta\right)^2}$$

- Highly virtual photon interactions should have an <u>isotropic distribution</u>
- \circ Measure θ' , the angle between the e^+ and the beam axis in the pair rest frame.
- \Rightarrow Data are fully consistent with $G(\theta)$ distribution expected for $\gamma\gamma \rightarrow e^+e^-$
- ⇒Measurably distinct from isotropic distribution

[1] S. Brodsky, T. Kinoshita and H. Terazawa, Phys. Rev. **D4**, 1532 (1971) STARLight: S. R. Klein, et. al. *Comput. Phys. Commun.* 212 (2017) 258

Outline of this talk

- 1. Introduction and Motivation
 - Motivation for direct measurement of electromagnetic fields
 - The extreme EM fields in heavy-ion collisions
- 2. Heavy ion collisions \rightarrow QED under extreme conditions
 - Surprising results in peripheral heavy-ion collisions
 - Breit-Wheeler pair production & vacuum birefringence
- 3. A tool for precision mapping of the electromagnetic fields
- 4. Conclusions